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The NIC hohlraum provides high radiation drive and 
near-round capsule implosions 

Coupling: ~ 90% of incident 
laser stayed inside the 

hohlraum  

Symmetry: to within ~ 10% of 
round, and tunable	
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Coupling (=1-backscatter/laser energy) [%] 

•  To meet drive and symmetry requirements: 

Drive: sufficient laser energy 
must couple to hohlraum 
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•  NIC Laser-Plasma Interactions (LPI): reduce energy coupling; provide symmetry tuning 

Can we improve coupling? 



LPI can modify how laser energy couples to  
the hohlraum target 

Energy Coupling è Tr 

 
       SBS:  laser scatters off self-generated 
                  ion acoustic waves (iaws) 
 
 
       SRS:  laser scatters off self-generated 
                  electron plasma waves (epws) 
 
 

Laser 

Backscatter 

Energy Re-direction è  symmetry change 

 
 Beam spray:  intensifies & scatters light 
 
 Beam bending:  moves light pattern on wall 
 
 Cross-beam transfer:  moves laser power  

       among beams 
 
Re-absorption of scattered light:  alters symmetry 



•    Hydrodynamic length and time scales are set by !
     target size [O(mm)] and laser pulse length [O(ns)]!

environment  --   plasma parameters and scale lengths !
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•    LPI evolves on: µm length and ps time scales!

beam propagation!

•    Detailed processes of LPI occur on “light” spatial !
     and temporal scales!

kinetic effects !
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e 

e-!
λ0!

wave-particle 

wave-wave 

LPI processes span a wide range of length and 
time scales 

need accurate plasma conditions!

need accurate beam model (including effects of cross-beam !
energy transfer, pump depletion, competition)!

need accurate interactions – when do kinetic 
effects matter?!

wall 

ablator 
+ 

capsule 



At ~ 10ʼs of petaflops, we can just begin to couple macroscale to mesoscale!

pF3D	
 Wave propagation simulations	


fluid 	

plasma model	


incident laser	

propagation	


scattered light	

propagation	


laser	

energy	


heat	

e-’s	


make x-rays;	

transport;	


hydro motion	


Radiation/Hydrodynamics simulations	

Lasnex/Hydra	


Laser!

Z3/BZohar	


e-!
λ0!

wave-particle 

wave-wave 

Our approach to multi-scale modeling  
uses a suite of tools 
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e	
 Particle in cell (PIC) simulations	


(ρ,j)	

particle	


phase space	

EM	


fields	


implosion	

& burn	


Calculate Gain Exponent G:  R = ηexp(G) 

Calculate Reflectivity, 
Energy Deposition 

Study Saturation Mechanisms 



Rapidly increasing computer performance enables 
LPI calculations unimaginable just twelve years ago 

Computer Performance by Year
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       2007 
•  enhanced hydro 
•  enhanced SRS model 
•  optimized parallelization 2 x 2 x 5 mm3 �

     1994 
•  serial code 
•  linearized hydro 
•  filamentation only  

.05 x .05 x .2 mm3 �

        2004 
•  massively parallel 
•  nonlinear hydro 
•  filamentation, SBS, SRS 
•  saturation models 

.05 x .05 �
   x 5 mm3 � 2 x 2 x 2 mm3 �

        2010 
•  improved advection algorithm 
•  multi-quad simulations 
•  requires finer resolution 
•  > 100 billion zones 

2 x 4 x 1.5 mm3 �



Cross-beam energy transfer is in a non-linear, saturated 
regime (2009 = linear regime) 
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Expt 

saturation from pump depletion 
(outer beams à0) 

P. A. Michel finds ion heating to be a key saturation mechanism 

XBT  

P. A. Michel 

Early NIC results (2009): transfer and 
symmetry are indeed tunable by Δλ	


S. Glenzer et al., Science (2010) 

Symmetry is now exclusively tuned by adjusting 
cross-beam transfer: 
-  equatorial symmetry: inner vs. outer beams 

energy balance (“2-color”) 
-  polar symmetry: 23.5° vs. 30° beams energy 

balance (“3-color”) 

2010+:  Operation at 1.5 MJ+ and larger Δλ; 
xbt still robust/tunable, but simulations require 

non-physical plasma wave saturation 



Calculations show strong stochastic ion heating at the 
LEH, saturating x-beam transfer  (P. A. Michel) 

At each LEH: 276 possible pairs of quads (i.e. 276 beat waves, i.e. 276 
electrostatic drivers): à ion acoustic turbulence	


3D “gridless” particle code: self-consistent plasma response given by ion susceptibility via f(v,t)	


We have developed new numerical tools to calculate the effects of turbulence on cross-
beam energy transfer 

t=500 ps t=20 ps t=0 

dots = 276 
electrostatic 
drivers 

ion acoustic velocity 
contour 

t=0: 3D Maxwellian 
distribution 

t=20 ps: hot ion tail 
near 3-4 vTi 

t=500 ps: ion-ion collisions à 
thermalization 

2012: XBT 

P. A. Michel 



Stochastic heating à strong increase of Tion , which 
saturates cross-beam transfer over a few 100’s ps 

Ion temperature increases at a rate of  
~ few keV/ns 

Cross-beam transfer gains decrease by 
4-5x over < 1 ns 

We are working on a self-consistent LPI-hydro implementation of this effect in our 
hydro codes 

2012: XBT 

P. A. Michel 



With laser and plasma modeling improvements,   
backscatter simulations begin to match experimental data 

•  Modified plasma conditions from improved hohlraum modeling  
                                                 (high flux model, or “HFM”) 

  -- results in a cooler plasma – SRS region moves closer to LEH 
  -- experimental and synthetic SRS spectra show SRS at similar wavelengths 

 
 
 
 
•  Realistic laser beams that include the effects of cross-beam energy transfer (XBT) 

  -- increased power on inner beams (symmetry) 
  -- spatial non-uniformity in cross section 

 
 
 
 
•  Laser quad overlap: simulate beam propagation (pF3D) for two quads of beams  
    (overlap contributes to the intensity; simulate 3-5 quads of beams?) 

2010+: SRS/SBS 



LPI:  Hohlraum modeling improvements (HFM) have 
resulted in a change in backscatter location 

SRS Location pre-2009 

wall!

ablator!
plasma! gas!

fill!

SRS!

LEH!

Current SRS Location (HFM) 

wall!
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30° SRS Gain Exponent!
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30° SRS Gain Exponent!

2010: SRS/SBS 



LPI:  30o SRS now occurs where there is overlap with 
nearest neighbor 23o quads   

Current SRS Location (HFM) 
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SRS Location pre-2009 
Quads not overlapped 

Quad overlap in 
SRS region 

xbt region 

xbt: cross-beam  
       energy transfer 

30o!
quad!

2010: SRS/SBS 



LPI:  Cross-beam energy transfer near the LEH results in a 
spatially non-uniform intensity distribution  

Current SRS Location (HFM) 

wall!

30o!
quad!LEH!

Beam before xbt, 
refraction, absorption 

Beam after xbt, 
refraction, absorption 

•  Cross Beam Energy Transfer (xbt): 

       laser forward scatters off ion acoustic waves 

       (P. A. Michel et al., PoP, May 2010) 

energy 
transfer 

IAW 

2010: SRS/SBS 



A promising start:  simulated reflectivity approaches 
experimental levels when these models are used 

Shot Energy 
(MJ) 

Time (ns) 30° SRS 
(TW) 

N091204 1.05 19 1.3 

2009 pF3D:  1 Quad 
                     pre-2009 plasma 
                     spatially uniform beam 

~ 0.1 

2010 pF3D:  1 Quad 
                     high flux model plasma 
                     spatially uniform beam 

0.18 

2011 pF3D:  1 Quad 
                     high flux model plasma 
                     spatially non-uniform beam 

0.43 

Shot Energy 
(MJ) 

Time (ns) 30° SRS 
(TW) 

N091204 1.05 19 1.3 

 
 
 
2010 pF3D:  2 Quads 
                     high flux model plasma 
                     spatially uniform beams 

0.62 

2011 pF3D:  2 Quads 
                     high flux model plasma 
                     spatially non-uniform beams 

0.67 

2012 pF3D:  3 Quads 
                     high flux model plasma 
                     spatially non-uniform beams 

~0.9-1.0 

Experimental Result Vs Single Quad 
pF3D Simulations 

Experimental Result Vs Double Quad 
pF3D Simulations 

Simulation in progress on Dawn machine 

2011+: SRS/SBS 



Proof-of-principle simulation:  propagate two quads        
                       (23°, 30°) through the resonance region   

*SLIP code, P. A. Michel and L. Divol�

Simulation @ 19 ns!
1.05 MJ Laser Energy!

N091204!

•   Laser Input:  use SLIP* to!
   propagate quads through!
   the LEH to the input plane!
   (E. A. Williams)!

•   pF3D: propagate two!
   quads of beams (23°, 30°)!
   through SRS region!
   (A. B. Langdon)!
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2010: SRS/SBS 



Both quad overlap and spatial non-uniformity increase  
reflectivity 

SRS�
wavelength�

1.8
 m

m
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3.67 mm  (azimuthal direction) �
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to “New SRS” Region 

2010+: SRS/SBS 
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Overlapping !
Quads !
SN-UT!

Single!
30°!
Quad!
SN-UT!

SRS Reflectivity on Input Plane 
of “New SRS” Region 

*We thank the Office of Science INCITE program for computational resources and the ALCF staff for computational support 
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SUT     = Spatially Uniform Transfer 
SN-UT = Spatially Non-Uniform Transfer 



SRS generated by single quads is resonantly amplified in 
the overlap region 

radial direction!
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2011-2012 backscatter levels: 
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reduction 
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Near-constant Inner Cone SRS 



A typical NIC hot electron spectrum: 



What are the leverage points for improved coupling, and 
how do we best manipulate them? 

      CAPABILITIES FOR IMPROVED UNDERSTANDING: 
 
•  LPI depends on ne, Te, Ti (Γ, ω2, ωp2, Κ’, k0)  

 -- currently inferred from HFM rad-hydro simulations 
 -- Thomson scatter/spectroscopy provides experimental opinion 
  (i)    optical Thomson scatter at LEH; 
  (ii)  dope various regions of target? 

 
•  Reflectivity in pF3D/VPIC simulations show pumps depletion 

 -- corroborate with time-resolved (~ 1-2 ps) backscatter diagnostic 
 
•  Integration of multi-scale modeling: 

 -- requires exaflops 
 
•  LPI Computational Physicists  

G = dz '
k0
2vosc

2 ! p2
2

v1!0!2

!2
!2
2 + v2

2" '2z '2
#
!1
v1

$
%
&

'
(
)z0

z f

* ! " damping rate 
0 = incident; 1 = reflected; 2 = plasma wave 

v = group velocity vosc ! c I! 2
1.37x1018

! p2 ! plasma freq. 
(1) 

(1): E. A. Williams, generalized Rosenbluth gain; 
applies to backscatter, xbt 



What are the leverage points for improved coupling, and 
how do we best manipulate them? 

       DESIGNS/EXPTS FOR IMPROVED UNDERSTANDING AND COUPLING: 
 
•  Design a target to mock up xbt at LEH: 

 -- measure beam transmission through xbt region (LPI depends on laser intensity) 
 -- provides information on spatial non-uniformity of beams after xbt 

 
•  Design a target that doesn’t require xbt for symmetry 

 -- doesn’t require knowledge of beam cross section to  
           understand backscatter 

 -- might reduce inner cone SRS/hot electrons 
 -- increase Te by doping higher-Z material into foam fill? 
 -- hybrid foam-fill/vacuum hohlraum? 

 
•  Design an “SBS-only” target 

 -- tests our understanding of hot electrons 
 -- improved coupling? 
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z f

* ! " damping rate 
0 = incident; 1 = reflected; 2 = plasma wave 

v = group velocity vosc ! c I! 2
1.37x1018

! p2 ! plasma freq. 



What are the leverage points for improved coupling, and 
how do we best manipulate them? 

            LPI MITIGATION/CONTROL: 
•  Laser Technology Improvements (affect laser intensity) 

 -- increased bandwidth 
 -- STUD Pulses (B. B. Afeyan) 
 -- increase spot size? 

 

•  Reduce scalelength over which SRS/SBS amplifies: 
 -- introduce density inhomogenieties (“zebra foam fills”) 
 -- introduce temperature inhomogenieties (embedded high-Z materials in hohlraum fill?) 

 

•  Reduce ne in hohlraum: 
 -- shape hohlraum (rugby?) to increase volume between capsule and wall 
 -- reduces backscatter; less xbt required 

 

•  Increase Te in hohlraum: 
-- improves beam propagation 
-- reduces backscatter; less xbt required 

•  Increase damping, reduce ne, increase Te: 
 -- alternate materials for hohlraum fill, ablator, wall 
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Increased capabilities, dedicated experiments, and testing 
LPI mitigation will promote improved coupling in ignition 
hohlraums 

CAPABILITIES 
 
•  Thomson Scatter 

 (optical, x-ray) 
 
•  Spectroscopy 

•  Time-resolved  
 backscatter diagnostic 

 
•  HPC allocation 

 -- meso/macro-scale cplg
 -- meso/micro-scale cplg 
 -- expand at mesoscale 

 
•  Dedicated computational 
     physicist to LPI 

EXPERIMENTS 
 
•  Transmitted beam 

thru xbt region 

•  Hohlraum that 
doesn’t require xbt 
for symmety 

•  Hohlraum that only 
generates SBS 

CONTROL/MITIGATION 
 

•  LASER: 
 -- bandwidth 
 -- STUD pulses 

 
•  PLASMA: 

 -- increase Te  
 (add high-Z fill dopant) 
 -- reduce density 
 (change hohlraum shape) 
 -- introduce   

           inhomogeneities 
  (“zebra” foam fills) 

 --  improve beam  
            propagation, increase  
            damping      
        (alternate ablators, fills,  
           walls, high-Z dopants) 

  




